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Adaptive stochastic resonance for 
unknown and variable input signals
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All sensors have a threshold, defined by the smallest signal amplitude that can be detected. The 
detection of sub-threshold signals, however, is possible by using the principle of stochastic resonance, 
where noise is added to the input signal so that it randomly exceeds the sensor threshold. The choice 
of an optimal noise level that maximizes the mutual information between sensor input and output, 
however, requires knowledge of the input signal, which is not available in most practical applications. 
Here we demonstrate that the autocorrelation of the sensor output alone is sufficient to find this 
optimal noise level. Furthermore, we demonstrate numerically and analytically the equivalence of 
the traditional mutual information approach and our autocorrelation approach for a range of model 
systems. We furthermore show how the level of added noise can be continuously adapted even to 
highly variable, unknown input signals via a feedback loop. Finally, we present evidence that adaptive 
stochastic resonance based on the autocorrelation of the sensor output may be a fundamental principle 
in neuronal systems.

Biological organisms, as well as technical systems, rely on sensors that transmit environmental signals into the 
system for subsequent information processing. Sensors, in general, have a limited sensitivity, so that input signals 
with amplitudes below a certain threshold cannot normally be detected. Stochastic resonance (SR), a phenom-
enon first described by Benzi et al. in 19811 enables non-linear systems to detect even sub-threshold signals by 
means of added noise2–4, which brings the weak input signal at random time points to above-threshold levels. 
This mechanism, however, requires a tuning of the added noise level to work properly. In the case of input signals 
with known properties, such as periodic signals with known frequency, the optimum noise level can be found by 
maximizing the signal-to-noise ratio of the sensor output4, 5. For arbitrary, non-periodic input signals, however, it 
is not possible to separate signal and noise in the detector output by frequency filtering, so that the quality of the 
signal transmission must be assessed in a different way.

Regardless of the detailed mechanism, SR has been identified in a wide range of biological systems, including 
the mating behavior of Nezara viridula that are able to detect subthreshold acoustic calling signals when mixed 
with acoustic Gaussian noise of suitable intensitiy6, rat cutaneous mechanoreceptors when stimulated with sub-
threshold aperiodic stimuli plus noise2 and the paddlefish which relies on electrical signals, amplified with sto-
chastic resonance, to hunt edible plankton7. SR has recently received increasing attention especially in the context 
of experimental and computational neuroscience where it helps to explain how neuronal systems operate in noisy 
environments8–10.

It can be demonstrated that an optimal level for the added noise exists that maximizes the information trans-
mission from the sub-threshold input to the sensor output11, 12. In self-adaptive non-linear signal detection sys-
tems based on SR, the optimum noise level can be continuously adjusted (increased or reduced until an optimum 
is found) via a feed-back loop, so that the system response in terms of information throughput remains optimal 
even if the properties of the input signal change (Fig. 1). For this processing principle, the term adaptive SR has 
been coined13–15.

A widely used measure (in the following refered to as ‘objective function’) for quantifying the information 
throughput is the mutual information (MI, cf. Methods) between the input signal and the sensor output3, 12, 14 a 
statistical quantity that measures the mutual dependence of these two variables16. It has been shown previously 
that the MI has a maximum at a well-defined, optimal intensity of the added noise12.

To calculate the MI (or other objective functions such as the signal-to-noise ratio, or the cross-correlation 
between input and output signal), the input signal must be known2–4, 6, 10–13, 17, but this is often not the case. Here, 
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we consider the practically important case of unknown and not necessarily periodic input signals. Although 
finding the optimal level of noise becomes less important with arrays of transducers17, it still remains an unsolved 
problem for single detector systems.

In this letter we show that this fundamental limitation of adaptive SR can be overcome by another objective 
function, namely the autocorrelation (AC, cf. Methods) of the detector output. Maximizing the output AC leads 
to similar or identical estimates of optimal noise intensities for SR as estimates based on established objective 
functions, yet with the decisive advantage that no knowledge of the input signal is required (Fig. 1).

Results
To demonstrate the equivalence of the mutual information (cf. Methods) between input and output, and the auto-
correlation of output (cf. Methods), for finding the optimal noise level, we consider a so-called discrete-symmetric 
model with a symmetric threshold |θ| = 1.1 and a discrete output yt = {−1.0, 0.0, 1.0}, i.e. the sensor output is zero 
for a sensor input st of −θ < st < θ, −1.0 for st < −θ, and 1.0 for st > θ. As a discrete input signal we generate a 
correlated bipolar string st = {−1.0, 1.0} with the probability of successive values being identical p(st = st+1) = 0.7 
(Fig. 2 top). Without added noise, the input signal alone never passes the thresholds.

Furthermore, we introduce the concept of the success probability (cf. Supplements): i.e. the conditional prob-
ability that, given a certain input, the correct corresponding output is produced. For a discrete-symmetric sensor 
with correlated bipolar input, we prove analytically (cf. Supplements) that the success probability as a function of 
noise intensity has a well-defined peak, indicating the existence of an optimal level of noise for SR. We also prove 
that the mutual information and the autocorrelation of the output can be expressed as strictly monotonous func-
tions of the success probability (cf. Supplements). Hence both, the mutual information and the autocorrelation of 
the output exhibit their maximum at the same level of noise. We numerically tested our approach and confirmed 
that both the mutual information and the autocorrelation of the output yielded similar optimal noise levels (Fig. 2 
bottom). In addition, we applied our analytical model to the important case of soft thresholds18 and non-Gaussian 
noise and show that this only changes the success probability Q, whereas the MI and AC remain monotonous 
functions of Q and, hence, peak at the same level of noise (cf. Supplements).

To generalize our finding and demonstrate that both approaches for quantifying the information through-
put give similar optimal noise intensities, we simulated a variety of models comprising different discrete and 

Figure 1. Principle of adaptive SR. Stochastic resonance describes how a sub-threshold signal with added 
noise of sufficient amplitude can result in a non-zero sensor output. If the input signal amplitude changes over 
time, the optimal noise level can be estimated and adjusted in a feedback loop from a resonance curve. If the 
probability density of the input signal levels is known, the resonance curve can be obtained from a variety 
of objective functions. For unknown input signals, however, the only applicable objective function is the 
autocorrelation of the sensor output.
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continuous input signals, different types of detector models and different signal-to-threshold distances (the dif-
ference between the temporal averaged sub-threshold signal and the threshold).

As detectors, we tested the above described discrete-symmetric model (Fig. 3d), a discrete-asymmetric 
(Fig. 3c), a continuous-asymmetric (Fig. 3a) and a continuous-symmetric (Fig. 3b) detector model (cf. Methods). 
These detectors are all memoryless, i.e. their output at a certain time depends only on their input at that time but 
neither on their internal state, nor on past inputs. We also tested a model with memory and implemented the 
biologically important neuronal leaky integrate-and-fire model (cf. Methods).

As discrete aperiodic input signals, we used the correlated bipolar string described above (Fig. 2 top). In 
addition, we tested different time series of continuous aperiodic signals, namely the time series x(t) of the 
3-dimensional Roessler attractor (Fig. 4a top, cf. Methods), an Ornstein-Uhlenbeck process (Fig. 4b top, cf. 
Methods), and wave files of recorded speech (Fig 4c top). Furthermore, a sine wave with constant frequency and 
amplitude was used as continuous periodic input (Fig. 4d top).

Four sample resonance curves (i.e. the mutual information and the autocorrelation of the output as functions 
of noise intensity) are shown in Fig. 4. In all cases the mean signal-to-threshold distance in arbitrary units was set 
to 1.1. Although the resonance curves from the mutual information (red) and the autocorrelation of the output 
(blue) are different, they peak at identical noise intensities.

We then tested all combinations of the five different detector models (that is: continuous-symmetric, 
continuous-asymmetric, discrete-symmetric, discrete-asymmetric, leaky integrate-and-fire) and the three input 
signal types (correlated bipolar string, Roessler attractor, sine wave) with twenty different signal-to-threshold 
distances (from 0.0 to 1.0 in steps of 0.05, arbitrary units) (Fig. 5). For each combination, ten trials were per-
formed with different seeds for the random number generator resulting in a total of 3000 simulations. For each 
simulation, the optimal noise intensities according to the mutual information (x-axes) and the autocorrela-
tion of the output (y-axes) have been evaluated and averaged over the ten performed trials per combination. 
Almost all tested combinations yielded nearly identical estimates of optimal noise intensity. The total correlation 
coefficient between optimal noise intensity based on mutual information versus autocorrelation was r = 0.96 
with a mean squared error of e = 0.026. Except for the combination of a correlated bipolar string with the leaky 
integrate-and-fire neuron, all other combinations yielded correlation coefficients from 0.925 to 0.999 with mean 
squared errors from 0.010 to 0.042, further demonstrating the equivalence of the two measures.

Discussion
We have shown that the autocorrelation of the output signal can serve as a universal objective function to estimate 
the optimal level of noise in SR-based sensory systems. This new approach allows for the first time the technical 

Figure 2. Results of analytical model and numerical simulations. Top: Example of a discrete signal consisting 
of a correlated bipolar string with p(st = st+1) = 0.7. Bottom: Comparison of different objective functions versus 
noise intensity for correlated bipolar strings with symmetric threshold and a signal-to-threshold distance of 0.1. 
Analytical and numerical solutions coincide, and all objectives functions show a maximum at the same noise 
level. MI = mutual information, AC = autocorrelation of the output signal.
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implementation of adaptive SR in situations where the information content of the input signal is unknown or 
highly variable. Once the signal is optimally transmitted by the sensor, the (noisy) output signal can be further 
improved by several techniques, such as kernel density estimation19.

Several interesting phenomena are closely related to stochastic resonance. A well-known technical system 
to reduce the effect of noise during analog-to-digital conversion is the Schmitt trigger20, whereby two different 
analog thresholds are defined for the rising and falling edges of the discretized signal. For the case of a periodic 
input signal and colored Gaussian noise, the ocurrance of SR in this system has been demonstrated analytically21.

In dithering22, noise is added to audio or image signals in order to reduce the perception of quantization errors 
and the appearance of spurious large-scale patterns that can result from analog-to-digital conversion. Such spu-
rious large scale patterns are associated with positive autocorrelations in the digitized signal. Therefore, although 
the aim in dithering is not to increase information transmission, the subjective perception of the signal by a 
human recipient may be improved by adding noise that in this case reduces such positive autocorrelations.

Related to this is the phenomenon of ghost stochastic resonance, which emerges when nonlinear systems are 
driven by periodic signals with more than one frequency in the presence of noise. An example for this effect is the 
auditory perception of ‘ghost’ frequencies that are not present in the acoustic pressure wave. The uncovering of 
this phenomenon helped to understand the perception of pitch in complex sound signals and the so-called ‘miss-
ing fundamental illusion’23, 24. Interestingly, when noise of increasing intensity is added to sound, the emergence 
of a ghost resonance coincides with a maximum of the output autocorrelation23, 24. This, in turn is closely linked 
to the effect of coherence resonance25, whereby a non-linear excitable system is driven by noise, resulting in a 
maximally autocorrelated system output at a certain optimum noise intensity.

Although SR can explain a number of adaptive processes in neural systems, in particular in auditory and visual 
signal processing26, how exactly that may be implemented is a matter of debate. Even for known input signals, the 
use of the mutual information or related approaches seem daunting for a biological system, since calculating them 
requires mathematical operations that are hard to implement in neuronal networks. By contrast, the autocorre-
lation function can be easily implemented with neuronal networks using delay-lines and coincidence detectors, 
as proposed in ref. 27 and verified, for example, in the nucleus laminaris of birds (barn owls), where they serve to 
code interaural time differences28. More recent work has shown that a surrogate of the autocorrelation function 
can even be computed by a single noisy neuron23, 24. Therefore, adaptive SR based on output autocorrelation may 
be a major processing principle in neural sensory systems and perception, and may also be responsible for patho-
logic conditions including neuropathic pain or tinnitus26.

Figure 3. Detector models. Sketch, demonstrating the reponse of different sensor types to a sinusoidal input 
siganl (red line). We compare the four cases of continuous (a,b) or discrete (c,d) output (blue lines or dots, 
respectively) and with asymmetric (a,c) or symmetric (b,d) thresholds (green lines).



www.nature.com/scientificreports/

5Scientific RepoRts | 7: 2450  | DOI:10.1038/s41598-017-02644-w

Methods
Mutual Information. The mutual information I(S; Y) quantifies the mutual dependence of two random 
variables S and Y.16. It determines how similar the joint distribution p(s, y) is compared to the product of the 
marginal distributions p(s)p(y)
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For continuous random variables, the summation is replaced by a double integral:
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where p(s, y) is now the joint probability density function of S and Y, and p(s) and p(y) are the marginal probabil-
ity density functions. The natural unit of I(S; Y) is bits, however in some cases it is more convenient to divide the 
total mutual information by the time, or by the number of spikes within the observed spike train, and thus derive 
mutual information rates R(S; Y) measured in bits s−1 or bits spike−1. The choice of the mutual information as an 
objective function for adaptive stochastic resonance is natural, because the fundamental purpose of any sensor is 
to transmit information into a subsequent information processing system. Indeed, it has been shown by several 
authors3, 12, 14 that, within the context of stochastic resonance, I(S; Y) as a function of the variance σ2 of the added 
noise has a maximum that indicates the optimal level of noise.

Figure 4. Performance of the output autocorrelation method. Comparison of resonance curves using the 
mutual information (red) and the output autocorrelation (blue) for different continuous signals. (a) Projection 
of the 3-dimensional Roessler attractor in one dimension, asymmetric threshold. (b) Ornstein-Uhlenbeck 
process, symmetric threshold. (c) Wave files of recorded speech, music and natural sounds, symmetric 
threshold. The biologically important case of the leaky integrate-and-fire model is shown in (d) with sine wave 
with constant frequency and amplitude as input. The signal-to-threshold distance was 0.1 for all cases.
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Output autocorrelation. The output autocorrelation function of the time lag τ (more precisely, the auto-
correlation coefficient29) is defined as

τ =
〈 − − 〉
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where y  is the mean and 〈⋅〉t indicates averaging over time. We note that for most applications (and discrete time 
steps) it is sufficient to consider only one time lag, i.e. τ = 1. However, for more complex signals, e.g. streams of 
n-bit words, it might be beneficial to calculate Cyy(τ) for a number of different subsequent lag times. In order to 
derive a single objective value in the case of multiple time lags τ, the root mean square (rms29) of the autocorrela-
tion function
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is calculated, where Nτ is the total number of different time lages.

Input signals for numerical simulations. Both, synthetically generated as well as natural signals were 
used in numerical simulations. As an example of a discrete input signal, a correlated, bipolar string st ∈ {−1, +1} 
was generated, in which the probability of successive values being identical was Prob(st = st−1)  = 0.7. As examples 
of continuous signals we used: first, a sine waveform signal with constant frequency and amplitude; second, an 
aperiodic time series derived from the variable x(t) of the Roessler attractor30
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with parameters a = 0.15, b = 0.2 and c = 7.1; third, the aperiodic random Ornstein-Uhlenbeck process31 
ξ= − +

τ
x x t( )1  , where ξ is an independent normally distributed random variable, τ is the correlation time and 

Figure 5. Correlation between optimal noise level from mutual information versus output autocorrlation. 
Numerical data from 5 sensor models, 3 different input signal, and different signal-to-threshold distances. The 
optimal noise intensities found by maximizing the mutual information (x-axes) are plotted versus the optimal 
noise intensities found by maximizing the output autocorrelation (y-axes). Except for correlated bipolar strings 
in combination with a leaky integrate-and-fire sensor, the optimal noise levels from both methods are highly 
correlated, with an overall correlation coefficient of r = 0.960 and a mean squared error of e = 0.027.
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 is the noise amplitude; fourth, wave files of speech, music and natural sounds. All synthetically generated signals 
were computed by numerically integrating the differential equations using fourth order Runge Kutta method.

Sensor models for numerical simulations. Four different memory-less sensor models were imple-
mented by combining symmetric and asymmetric thresholds, with discrete and continuous sensor output func-
tions (Fig. 5). In the symmetric models, there exist two thresholds +θ and −θ. Without added noise, the sensor 
output is zero for |st| < θ, st − θ for st > θ, and st + θ for st < −θ. In the asymmetric models, there exists only a single 
positive threshold θ > 0. Here, without added noise, the sensor output is zero for st < θ and st − θ for st >= θ. We 
note that the analytical model described above belongs to the class of discrete symmetric models. As one example 
of the detectors with memory, were the output depends not only on the momentary input and added noise, but 
also on earlier internal states of the detector itself, we choose the leaky integrate-and-fire neuron model32, 33 with

τ
= − +x x s1

m
t

where x is the membrane potential, τm the mebrane time constant and st the input signal. If x crosses the threshold 
θ from below, an output spike is generated and the membrane potential is set to the resting potential xr, which is 
chosen to be zero for simplicity.
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Supplements

Success probability The output of a memory-less sensor can be described
by a conditional probability distribution p(yt|st, nt), which includes determin-
istic behaviour as a special case. Assuming statistically independent noise with
distribution p(nt), the signal transmission properties of the sensor are given by
p(yt|st) =

∑
nt
p(yt|st, nt)p(nt). Ideally, the sensor output should be equal to

the input signal, yt = st, so that p(yt|st) = δyt,st . It is therefore meaningful to
quantify the performance of a sensor by the success probability

Q = p(yt=st), (1)

which is expected to peak at some optimum noise level within the context of
stochastic resonance.

Analytical model In general, the momentary response of a SR-sensor can
depend on the history of internal states of the system, as is the case in integrate-
and-fire-neurons. For simplicity, in the analytical model we only consider memory-
less sensors, which respond to the present input signal st and noise value nt
independently from their former activity states.

We consider a bipolar stochastic sensor in which both the input signal st
and the sensor output yt can only take on the values −1 and +1. The noise
values nt, however, are continuous gaussian random numbers with variance σ2

and mean µ = 0, without any temporal correlations. We further assume that
these two values appear in the input signal with equal probalility, p(st=−1)=
p(st = +1) = 0.5. By assuming two symmetric detection thresholds ±θ (figure
3 lower right inset), together with symmetric white noise, it can be assured
that the distribution of sensor outputs p(yt = −1) = p(yt = +1) = 0.5 is also
symmetric, so that the mean, variance and entropy of yt remain constant even
if the noise level is changed. Hence, the expressions for I(S;Y ) and Cyy(τ) can
be slightly simplified. In particular, the autocorrelation can be reduced to the
non-normalized form Cyy(τ) ∝ 〈ytyt+τ 〉, and, furthermore, will be considered
only for lagtime τ=1.

The sensor adds the noise nt to the binary input signal st. If st+nt exceeds
the upper threshold θ, the output yt is +1, if st +nt falls below the lower
threshold −θ, output yt is −1. For st+nt ∈ [−θ,+θ], the output is chosen
randomly between the two binary values +1 and −1.

We are interested in the case of a threshold θ > 1 which exceeds the signal
amplitude, so that without the assistance of added noise the signal cannot be
detected. Adding a random noise value nt to a (say) positive input signal st can
have three possible effects. If we consider the noise to be sufficiently positive
to lift the signal beyond the upper threshold, then the success probability Q =
p(yt = +1 | st = +1) = p(yt =−1 | st =−1) will be increased. Alternatively, if
the noise happens to be strongly negative and draws the positive signal below
the lower threshold −θ then the success probability Q will be decreased. The
third possibility is that st+nt remains sub-threshold. Such cases make the signal
transmission neither better nor worse.
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It is intuitively clear that small noise levels will increase Q, but as soon as
a considerable fraction of momentary noise levels nt exceeds 2+ (θ−1), the
success probability Q will fall again. In our case it is given by Q = Q(σ) =
1
2 + 1

2

[
W ( θ+1σ )−W ( θ−1σ )

]
, where W (x)= 1

2erf( x√
2
) is a slightly rescaled error

function (see Derivation of success probability for a detailed derivation). As a
function of the noise level σ, the success probability has a well-defined maximum.

In this sensor model, the mutual information I(Y ;S) can be expressed as a
strictly increasing function of the success probability: I(Q) = 1+Q log2Q+(1−
Q) log2(1−Q) (see Derivation of mutual information for a detailed derivation).

Since both I and Q require access to the sub-threshold signal st, we turn
to the autocorrelation function Cyy of the sensor output. Since the mean y of
yt is zero and its variance constant, we can use a non-normalized version of
equation(6). Furthermore, we restrict our analytical consideration to a single
lag-time τ = 1, defining C = 〈ytyt+1〉. The modulus of this quantity, too,
can be expressed as a strictly increasing function of the success probability:
|C(Q)| = | 〈stst+1〉 | [1− 4Q(1−Q)], where 〈stst+1〉 are the input correlations
(see Derivation of output autocorrelation for a detailed derivation).

Derivation of success probability The normalized Gaussian distribution
with zero-mean and standard deviation σ is given by

g(x, σ) =
1√
2πσ

e−
1
2 (x/σ)

2

(2)

For later convenience, we define a function W (x) via

W
( z
σ

)
=

∫ z

0

g(x, σ) dx =
1

2
erf

(
1√
2

z

σ

)
, (3)

where erf(x) = 2√
π

∫ x
0
e−t

2

dt is the error function.

The success probability Q is given by

Q = p(yt=+1|st=+1) =

=
1

2
· p( −θ − 1 < nt < θ − 1 ) +

+ p( nt > θ − 1 ) (4)

The factor 1
2 accounts for the stochastic output of the unit in the case when

st+nt is sub-threshold. We can now express the probabilities as integrals over
Gaussians:
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Q =
1

2
·

(∫ θ−1

0

g(x, σ)dx+

∫ θ+1

0

g(x, σ)dx

)
+

+

(
1

2
−
∫ θ−1

0

g(x, σ)dx

)
(5)

Next we use the function W (x) defined above:

Q =
1

2
·
(
W

(
θ − 1

σ

)
+W

(
θ + 1

σ

))
+

+

(
1

2
−W

(
θ − 1

σ

))
=

=
1

2
+

[
W

(
θ + 1

σ

)
−W

(
θ − 1

σ

) ]
(6)

Derivation of mutual information The mutual information of the detector
output and the input signal is defined as

I(Y ;S) =
∑
y,s

p(y, s) log2

(
p(y, s)

p(y)p(s)

)
=

=
∑
y,s

p(y|s)p(s) log2

(
p(y|s)p(s)
p(y)p(s)

)
=

=
∑
y,s

p(y|s)(1/2) log2

(
p(y|s)(1/2)

(1/2)(1/2)

)
=

=
1

2

∑
y,s

p(y|s) log2 (2p(y|s)) . (7)

We explicitly go through all four terms:

2I(Y ;S) =
∑
y,s

p(y|s) log2 (2p(y|s)) =

= p(y=−1|s=−1) log2 (2p(y=−1|s=−1)) +

+ p(y=−1|s=+1) log2 (2p(y=−1|s=+1)) +

+ p(y=+1|s=−1) log2 (2p(y=+1|s=−1)) +

+ p(y=+1|s=+1) log2 (2p(y=+1|s=+1)) =

= Q log2 (2Q) +

+ (1−Q) log2 (2(1−Q)) +

+ (1−Q) log2 (2(1−Q)) +

+ Q log2 (2Q) . (8)
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Therefore

I(Y ;S) = Q log2 (2Q) + (1−Q) log2 (2(1−Q))

= 1 +Q log2(Q) + (1−Q) log2(1−Q). (9)

Derivation of output autocorrelations in the analytical model The
temporal correlations of the input signal can be expressed by the probability
q = p(s1 =+1, s0 =+1) in the following way:

〈st+1 st〉 = 〈s1 s0〉 =

=
∑
s0,s1

p(s1, s0) (s1 s0) =

= p(s1 =−1|s0 =−1)p(s0 =−1) [(−1)(−1)] +

+ p(s1 =−1|s0 =+1)p(s0 =+1) [(−1)(+1)] +

+ p(s1 =+1|s0 =−1)p(s0 =−1) [(+1)(−1)] +

+ p(s1 =+1|s0 =+1)p(s0 =+1) [(+1)(+1)] =

= q (1/2) [1] +

+ (1− q) (1/2) [−1] +

+ (1− q) (1/2) [−1] +

+ q (1/2) [1] = 2q − 1. (10)

The temporal correlations in the output signal are given by

Cyy(τ = 1) = 〈yt+1 yt〉 = 〈y1 y0〉 =

=
∑
y0,y1

p(y1, y0) (y1 y0). (11)

Consider for example the probability p(y1 = +1, y0 = +1). There are four
different chains of events which can produce a sequence of two successive +1’s
in the output signal:
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p(y1 =+1, y0 =+1) =

= p(y1 =+1|s1 =−1)p(s1 =−1|s0 =−1) ·
· p(y0 =+1|s0 =−1)p(s0 =−1) +

+ p(y1 =+1|s1 =−1)p(s1 =−1|s0 =+1) ·
· p(y0 =+1|s0 =+1)p(s0 =+1) +

+ p(y1 =+1|s1 =+1)p(s1 =+1|s0 =−1) ·
· p(y0 =+1|s0 =−1)p(s0 =−1) +

+ p(y1 =+1|s1 =+1)p(s1 =+1|s0 =+1) ·
· p(y0 =+1|s0 =+1)p(s0 =+1) =

= (1−Q) q (1−Q) (1/2) +

+ (1−Q) (1− q) Q (1/2) +

+ Q (1− q) (1−Q) (1/2) +

+ Q q Q (1/2) =

=
q

2
+ (2q − 1)Q(1−Q) =: A. (12)

For symmetry reasons, p(y1 = −1, y0 = −1) = p(y1 = +1, y0 = +1) = A. In
the same way, p(y1 = +1, y0 = −1) = p(y1 = −1, y0 = +1) = B.

Since
∑
y0,y1

p(y1, y0) = 1 = 2A+ 2B, it follows that B = 1
2 −A.

Knowing all four joint probabilities, we can proceed to compute the temporal
correlations in the output signal:

Cyy(τ = 1) = 〈y1 y0〉 =

= A(−1)(−1) +B(−1)(+1) +

+ B(+1)(−1) +A(+1)(+1) =

= 2A− 2B =

= (2q − 1) [ 1− 4Q(1−Q) ] =

= 〈st+1 st〉 [ 1− 4Q(1−Q) ] . (13)

Soft thresholds and non-Gaussian noise As described above, the proba-
bilistic information transmission from the signal input st to the output yt of a
sensor are defined by

p(yt|st) =

∫ +∞

−∞
p(yt|st, nt) p(nt) dnt. (14)

Here, p(yt|st, nt) characterizes the properties of a specific sensor type, and
p(nt) = pnoi(nt) is the noise distribution.
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In this work, we are considering sensors where signal and noise are com-
bined additively, so that p(yt|st, nt) can be replaced by a simpler conditional
probability that depends only on the sum xt = st + nt:

p(yt|st, nt) −→ p( yt | st+nt = xt ) = p(yt|xt). (15)

Furthermore, in the case of bipolar sensors, where yt = +1 and yt = −1
are the only possible outputs, the sensor can be characterized by a response
function:

Pres(x) = p(yt = +1|xt = x). (16)

For such additive, bipolar sensors, the success probability Q can be expressed
via the response function and the noise distribution as

Q = p(yt = +1|st = +1)

=

∫ +∞

−∞
Pres(x) p(nt = x−1) dx

=

∫ +∞

−∞
Pres(x) pnoi(x−1) dx. (17)

So far in this Supplemental, we have only considered detectors with a piece-
wise constant respose function (that is, where Pres(x < −θ) = 0 and Pres(−θ <=
x <= +θ) = 1

2 and Pres(x > +θ) = 1), and where the noise was normal dis-
tributed (see Fig.1(a)).

However, we can easily generalize our analytical model to permit arbitrary
response functions (for example, by using a smooth sigmoidal function rather
than one with hard thresholds) and non-Gaussian noise distributions. In order
to keep the symmetry p(yt = −1) = p(yt = +1) = 0.5 of the output signals
(which we have used to simplify our analytical derivation), we have to restrict
our choices to response functions with Pres(−x) = 1 − Pres(+x) and to noise
distributions with pnoi(−x) = pnoi(+x). One of the possible choices is sketched
in Fig.1(b).

The generalization of the model to smooth sigmoidal sensor responses and
non-Gaussian noise does only affect the success probability Q = Q(σ) and its
dependence on the noise amplitude σ. As long as Q(σ) has a peak at some
optimum noise level σopt, the strictly monotonous dependence of the mutual
information I and the output correlations Cyy on Q guaranty that I and Cyy
will peak at the same noise level σopt.

Different types of detectors and multiplicative noise For all bipolar
sensors (with st ∈ {−1,+1} and yt ∈ {−1,+1}) a success probability can always
be defined as

Q =

∫ +∞

−∞
p(yt = +1 | st = +1, nt) p(nt) dnt. (18)
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The general conditional probability p(yt = +1 | st = +1, nt) includes not
only detectors where signal and noise are combined additively, but allows for an
arbitrary probabilistic dependence of yt on st and nt. As long as the noise nt
is temporally un-correlated (and all variables st, nt and yt are zero-mean) Cyy
and the MI will remain monotonous functions of Q.

However, it is not guaranteed that these objective functions will always have
a maximum as a function of the noise strength σ. Consider, for example, a
sensor system where the zero-mean, temporally correlated signal st is multiplied
with zero-mean, white noise nt, and where the product xt = st ∗nt is compared
with a hard or soft sigmoidal threshold, as above. In this case, the amplitude
modulated noise xt is also un-correlated, so that Cyy = 0, no matter how the
noise strength σ is set. Thus, for such multiplicative systems, the output auto-
correlation is not in general a suitable objective function for adaptive SR. In
the context of neural systems, however, the assumptions of a symmetric bipolar
threshold and of completely un-correlated noise are not biologically plausible.
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−θ +θ −θ +θx x

1 1
(a) (b)

Figure 1: Sketch of possible response functions (blue) and noise distributions
(green). (a) Piecewise constant Pres(x) and Gaussian pnoi(x). (b) Smooth
sigmoidal Pres(x) and leptocurtic pnoi(x)
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